Embedding convex geometries and a bound on convex dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic values on convex geometries

A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-KreinMilman property. If L is the Boolean algebra 2 then we obtain an n-person cooperative game. We will extend the work of Weber on probabilistic values to games on convex geometries. As a result, we obtain a family of axioms that give rise...

متن کامل

Clustering on antimatroids and convex geometries

The clustering problem as a problem of set function optimization with constraints is considered. The behavior of quasi-concave functions on antimatroids and on convex geometries is investigated. The duality of these two set function optimizations is proved. The greedy type Chain algorithm, which allows to find an optimal cluster, both as the “most distant” group on antimatroids and as a dense c...

متن کامل

Marginal operators for games on convex geometries

We introduce marginal worth vectors and quasi-supermodular games on convex geometries. Furthermore, we study some properties of the minimal marginal operator and the maximal marginal operator on the space of the games on convex geometries. 1991 Mathematics Subject Classi...cation: 90D12

متن کامل

The Banzhaf power index on convex geometries

In this paper, we introduce the Banzhaf power indices for simple games on convex geometries. We define the concept of swing for these structures, obtaining convex swings. The number of convex swings and the number of coalitions such that a player is an extreme point are the basic tools to define the convex Banzhaf indices, one normalized and other probabilistic. We obtain a family of axioms tha...

متن کامل

Efficient Knowledge Assessment Based on Convex Geometries

The goal of this paper is to develop a theoretical framework for efficient assessment of learners’ understanding of carefully chosen terms and concepts. The model is based on the theory of knowledge spaces and lattices of convex geometries. The structure of the latter is used to select only knowledge states that imply understanding of key ideas and minimize the effect of lucky guesses while det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.10.006